Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 11: 1378448, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577546

RESUMO

Introdction: Aeromonas veronii is a significant pathogen to various aquatic life. Infections in fish can lead to high mortality rates, causing substantial economic losses in aquaculture. Vaccination is proposed as a substitute for antibiotics in aquaculture to decrease disease-related mortality and morbidity. Our study previously constructed a hisJ-deleted strain of A. veronii, which provided protective effect to Loach. Methods: To further assess the vaccine's applicability, this study evaluated its genetic stability and safety, and the immune protective effects in Carassius auratus through four distinct administration routes: intraperitoneal injection, intramuscular injection, oral administration, and immersion, to determine the efficacy of these administration routes. Results: The results showed that the vaccine remained genetically stable after 45 generations. Immunization via these administration routes was safe for Carassius auratus, with intraperitoneal and intramuscular injections causing stronger adverse reactions. Immersion immunization resulted in mild adverse reactions, and no significant adverse reactions were observed following oral immunization. Immunizing Carassius auratus at safe concentrations via these routes enhanced the phagocytic activity in serum, increased the levels of non-specific immune-related enzymes (ACP, AKP, C3, C4, LZM, SOD, and IgM), and improved specific serum antibody levels. It also elevated levels of cytokines related to inflammatory responses (IL-1ß, IL-10, TNF-α, TGF-ß) in organ tissues (liver, spleen, kidney, mid-post intestine, and gills). The survival rates of Carassius auratus were measured after challenging with the virulent strain A. veronii TH0426, resulting in the relative survival rates of 64% for Intraperitoneal vaccine group, 56% for Intramuscular vaccine group, 52% for oral vaccine group, and 48% for immersion vaccine group. Analysis of bacterial load in the liver, spleen, and kidney post-challenge showed a decreasing trend in the control group, indicating that the vaccine strain ΔhisJ could gradually restrict the rapid proliferation of bacteria in these tissues, thereby providing a certain level of immune protection against A. veronii. Discussion: In brief, the vaccine strain ΔhisJ can serve as a safe live attenuated vaccine for Carassius auratus, and this study lays the foundation for the development of live attenuated vaccines against Aeromonas veronii.

2.
BMC Vet Res ; 20(1): 100, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468314

RESUMO

BACKGROUND: Salmonella enteritidis (SE) is a major zoonotic pathogen and causes infections in a variety of hosts. The development of novel vaccines for SE is necessary to eradicate this pathogen. Genetically engineered attenuated live vaccines are more immunogenic and safer. Thus, to develop a live attenuated Salmonella vaccine, we constructed a cheV gene deletion strain of SE (named ΔcheV) and investigated the role of cheV in the virulence of SE. First, the ability to resist environmental stress in vitro, biofilm formation capacity, drug resistance and motility of ΔcheV were analyzed. Secondly, the bacterial adhesion, invasion, intracellular survival assays were performed by cell model. Using a mouse infection model, an in vivo virulence assessment was conducted. To further evaluate the mechanisms implicated by the reduced virulence, qPCR analysis was utilized to examine the expression of the strain's major virulence genes. Finally, the immune protection rate of ΔcheV was evaluated using a mouse model. RESULTS: Compared to C50336, the ΔcheV had significantly reduced survival ability under acidic, alkaline and thermal stress conditions, but there was no significant difference in survival under oxidative stress conditions. There was also no significant change in biofilm formation ability, drug resistance and motility. It was found that the adhesion ability of ΔcheV to Caco-2 cells remained unchanged, but the invasion ability and survival rate in RAW264.7 cells were significantly reduced. The challenge assay results showed that the LD50 values of C50336 and ΔcheV were 6.3 × 105 CFU and 1.25 × 107 CFU, respectively. After the deletion of the cheV gene, the expression levels of fimD, flgG, csgA, csgD, hflK, lrp, sipA, sipB, pipB, invH, mgtC, sodC, rfbH, xthA and mrr1 genes were significantly reduced. The live attenuated ΔcheV provided 100% protection in mice against SE infection. CONCLUSION: All the results confirmed that the deletion of the cheV gene reduces the virulence of SE and provides significant immune protection in mice, indicating that ΔcheV could be potential candidates to be explored as live-attenuated vaccines.


Assuntos
Salmonelose Animal , Vacinas contra Salmonella , Animais , Humanos , Salmonella enteritidis , Vacinas contra Salmonella/genética , Virulência/genética , Proteínas de Bactérias , Células CACO-2 , Salmonelose Animal/microbiologia
3.
Immunopharmacol Immunotoxicol ; 45(1): 26-34, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35980837

RESUMO

OBJECTIVE: Corynoline is an active substance extracted from Corydalis bungeana Turcz and exerts a therapeutic effect in multiple diseases by alleviating inflammatory response. The present study sought to elucidate the role of corynoline in ulcerative colitis (UC). METHODS: The experimental colitis models were induced in BALB/c mice via receiving a drinking water supplemented with 3.5% (I) dextran sulfate sodium (DSS) ad libitum for 7 days. RESULTS: Corynoline administration inhibited body weight loss, colon shortening, disease activity index and colonic pathomorphological changes in DSS-treated mice. Besides, corynoline down-regulated the levels of pro-inflammatory interleukin (IL)-1ß, IL-6 and tumor necrosis factor Alpha (TNF-α), as well as decreased myeloperoxidase (MPO) activity in the colon of DSS-treated mice. In addition, severe oxidative stress in the colonic tissues of DSS-treated was mitigated by corynoline treatment. However, these beneficial effects were reversed by a specific nuclear factor E2-related factor 2 (Nrf2) inhibitor ML385 intervention. Further evidence confirmed that corynoline promoted Nrf2 nuclear migration and heme oxygenase-1 gene expression in the colonic tissues of UC mice. Besides, corynoline treatment restrained colonic nuclear factor-kappa B (NF-κB) activation as proved by the decrease in phosphorylation and nuclear translocation of NF-κB. CONCLUSIONS: Corynoline ameliorates DSS-induced mouse colitis, which may provide a promising therapeutic strategy for UC treatment.


Assuntos
Colite Ulcerativa , Colite , Camundongos , Animais , NF-kappa B/metabolismo , Sulfato de Dextrana/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite Ulcerativa/tratamento farmacológico , Colo/patologia , Modelos Animais de Doenças
4.
Curr Microbiol ; 80(1): 2, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418790

RESUMO

The purpose of this study was to elucidate the roles of peptidoglycan-associated lipoprotein (Pal protein) in the proliferation of Brucella in macrophage and bacterial virulence, and to evaluate the immune effect of Pal protein to Salmonella enteritidis. Murine macrophage-like cell line Raw264.7 was stimulated by recombinant Pal protein, and the expression of TNF-α and IFN-γ were up-regulated, but not it of IL-1ß and IL-6. The macrophages infection and in vitro simulated stress assays showed that deletion of pal gene reduced the proliferation of Brucella in macrophages, the survival in acidic, oxidative and polymyxin B-contained environment. The mice infection assay showed that mice challenged with the pal mutant strain were found to have more severe splenomegaly, but less bacterial load. After oral immunization of mice, Pal protein induced a higher titer of mucosal and humoral antibody (IgA and IgG) against heat-killed Salmonella enteritidis, and a stronger Th1 cellular immune response. The challengte experiments showed Pal protein elevated the survival rate and reduced the bacterial load of spleens in immunized mice. In conclusion, our results revealed the important roles of pal gene in Brucella virulence, and Pal protein was a potentially valuable adjuvant against mucosal pathogens, such as Salmonella enteritidis.


Assuntos
Brucella , Camundongos , Animais , Salmonella enteritidis/genética , Virulência , Macrófagos , Proliferação de Células
5.
Curr Microbiol ; 79(12): 378, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329326

RESUMO

It is widely acknowledged that pseudogenes play important roles in bacterial diversification and evolution and participate in gene regulation and RNA interference (RNAi). However, the function of most pseudogenes in Brucella spp remains poorly understood, warranting further studies.To comprehensively analyze the function of the pseudogenes BMEA_B0173 in Brucella melitensis strain 63/9, a BMEA_B0173 in-frame deleted mutant strain was constructed. Then, the phenotypes of the mutant strain, such as growth characteristics and bacterial virulence, were assessed in mice infection models. Finally, iTRAQ analysis was performed to investigate the gene expression profile affected by the pseudogenes BMEA_B0173. In this study, we found that BMEA_B0173 deletion exhibited increased agglutination with M monospecific sera. In a mouse model of chronic infection, the BMEA_B0173 deletion strain displayed increased colonization in the spleen compared to the wild-type pathogen. The iTRAQ assay revealed that 252 proteins were differentially expressed between the BMEA_B0173 deletion and the wild-type strains. In addition, deletion of BMEA_B0173 significantly increased the expression of proteins involved in the denitrification pathway, iron metabolism, and several transcriptional regulators, which might cause increased virulence of the mutant strain. In conclusion, this study preliminary uncovered the function of the pseudogene BMEA_B0173 in Brucella melitensis 63/9 and provided novel insights for studying the pathogenesis of Brucella strains.


Assuntos
Brucella melitensis , Brucelose , Camundongos , Animais , Brucella melitensis/genética , Brucella melitensis/metabolismo , Virulência/genética , Pseudogenes , Epitopos/metabolismo , Brucelose/microbiologia , Modelos Animais de Doenças , Proteínas de Bactérias/genética
6.
Int Immunopharmacol ; 109: 108824, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35561481

RESUMO

Methotrexate (MTX) treats various diseases but also damages intestinal barrier and leads to enteritis. Albiflorin (ALB) has a variety of pharmacological effects, including antioxidant, anti-inflammation and anti-apoptosis. In the present study, we evaluated the therapeutic effect of ALB on MTX-induced enteritis and investigated the possible mechanisms involved. Male SD rats were intraperitoneally injected with 7 mg/kg MTX for three consecutive days to establish the enteritis model. ALB (20 or 40 mg/kg/day) was intragastrically administrated since two days prior MTX treatment and lasted for six days. We found that ALB treatment increased body weight and intestinal weight of rats with MTX injection. The disease activity index (DAI) score was also decreased after ALB administration. In histological examination, ALB treatment attenuated inflammatory cells infiltration and promoted survival of goblet cells. In detection of inflammatory-associated factors, ALB treatment decreased CD68+ cells infiltration, inhibited myeloperoxidase activity, and suppressed intercellular cell adhesion molecule-1 and cyclooxygenase-2 expression. Additionally, ALB reduced malondialdehyde, glutathione levels, inhibited superoxide dismutase activity and suppressed reactive oxygen species production. Moreover, ALB treatment effectively inhibited NLRP3, as well as caspase 1 p20 and interleukin (IL)-1ß and 18 expression. Finally, nuclear factor-κB (NF-κB) p65 phosphorylation and nuclear translocation were also demonstrated to be blocked upon ALB treatment. In conclusion, our findings indicated that ALB alleviated MTX-induced enteritis via inhibiting the NF-κB/NLRP3 pathway.


Assuntos
Enterite , NF-kappa B , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Hidrocarbonetos Aromáticos com Pontes , Enterite/induzido quimicamente , Enterite/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Masculino , Metotrexato/uso terapêutico , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley
7.
PLoS Negl Trop Dis ; 14(12): e0008888, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33373362

RESUMO

Brucella spp. are facultative intracellular pathogens that can persistently colonize host cells and cause the zoonosis- brucellosis. The WHO recommended a treatment for brucellosis that involves a combination of doxycycline, rifampicin, or streptomycin. The aim of this study was to screen rifampicin-resistance related genes by transcriptomic analysis and gene recombination method at low rifampicin concentrations and to predict the major rifampicin- resistance pathways in Brucella spp. The results showed that the MIC value of rifampicin for B. melitensis bv.3 Ether was 0.5 µg / mL. Meanwhile, B. melitensis had an adaptive response to the resistance of low rifampicin in the early stages of growth, while the SNPs changed in the rpoB gene in the late stages of growth when incubated at 37°C with shaking. The transcriptome results of rifampicin induction showed that the functions of significant differentially expressed genes were focused on metabolic process, catalytic activity and membrane and membrane part. The VirB operon, ß-resistance genes, ABC transporters, quorum-sensing genes, DNA repair- and replication -related genes were associated with rifampicin resistance when no variations of the in rpoB were detected. Among the VirB operons, VirB7-11 may play a central role in rifampicin resistance. This study provided new insights for screening rifampicin resistance-related genes and also provided basic data for the prevention and control of rifampicin-resistant Brucella isolates.


Assuntos
Antibióticos Antituberculose/farmacologia , Brucella melitensis/efeitos dos fármacos , Rifampina/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Farmacorresistência Bacteriana , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Testes de Sensibilidade Microbiana , Rifampina/administração & dosagem
8.
Microb Pathog ; 149: 104577, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33122048

RESUMO

Aeromous veronii is a severe pathogen that can infect aquatic organisms and mammals also causes irreparable damage to fish aquaculture. Analysis of the results of epidemiological investigations have revealed that its tolerance to drugs and the virulence of A. veronii have increased in recent years. Most of the researches on A. veronii focuse on the strain isolation, identification, and drug susceptibility. However, we do not know so much about the molecular mechanism of the pathogenesis on A. veronii. Here we identified and obtained the highly expressed TH0426 Nucleoside Diphosphate Kinases (NDK) of A. veronii. We first constructed a mutant strain (△-ndk) by generating an in-frame deletion of the ndk gene, to investigate the functional role in A. veronii TH0426. The ability in the adhesion and invasion of EPC cells and biofilm formation significantly reduced of the △-ndk strain. The motility test showed that the ndk gene affected on the swimming ability, while did not affect the swarming motility. Compared with the wild-type strain TH0426, the pathogenicity of △-ndk strain to zebrafish reduced severely. Besides, the ndk gene has affected the apoptosis rate of A. veronii TH0426. These results would help to demonstrate the function of ndk further and realize the pathogenesis on A. veronii.


Assuntos
Aeromonas veronii , Núcleosídeo-Difosfato Quinase , Animais , Aquicultura , Núcleosídeo-Difosfato Quinase/genética , Virulência , Peixe-Zebra
9.
Int Microbiol ; 23(4): 489-499, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31950405

RESUMO

Aeromonas veronii is one of the main pathogens causing sepsis and ulcer syndrome in freshwater fish. Analysis of the results of epidemiological investigations in recent years has revealed that the virulence of A. veronii and its tolerance to drugs have been increasing year by year. Currently, most of the research on A. veronii focuses on its isolation, identification, and drug susceptibility, whereas research on its virulence factors and pathogenesis mechanisms is relatively rare. In this study, we identified and obtained the highly expressed TH0426 cadaverine reverse transporter (CadB) of A. veronii. We used efficient suicide plasmid-mediated homologous recombination to delete the cadB gene in TH0426 and constructed a cadB deletion strain. The LD50 of ΔcadB was 93.2 times higher than that of TH0426 in zebrafish, the toxicity of ΔcadB was 9.5 times less than that of TH0426 in EPC cells, and the biofilm formation ability of ΔcadB was 5.6-fold greater than that of TH0426. In addition, motility detection results indicated that ΔcadB had lost its swimming ability. The results of flagellar staining and TEM demonstrated that ΔcadB shed the flagella. In summary, the virulence and adhesion of A. veronii TH0426 were significantly decreased by the deletion of cadB, which might provide a theoretical basis for research into A. veronii virulence factors.


Assuntos
Aeromonas veronii/genética , Aeromonas veronii/patogenicidade , Sistemas de Transporte de Aminoácidos/genética , Antiporters/genética , Aderência Bacteriana/genética , Proteínas de Bactérias/genética , Fatores de Virulência/genética , Aeromonas veronii/isolamento & purificação , Animais , Biofilmes/crescimento & desenvolvimento , Cadaverina/metabolismo , Linhagem Celular , Doenças dos Peixes/microbiologia , Flagelos/genética , Deleção de Genes , Locomoção/genética , Virulência/genética , Peixe-Zebra/microbiologia
10.
Microb Pathog ; 141: 103918, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31935441

RESUMO

Aeromonas veronii is an important zoonotic pathogen that causes significant economic losses in the aquaculture industry. The use of probiotics in aquaculture is a practical alternative to antibiotics to promote animal health and aid in disease prevention. In the present study, we aimed to construct a recombinant Lactobacillus casei(surface-displayed or secretory) strain containing Malt from A. veronii TH0426 and assess its potential as an oral vaccine. A 1314-bp Malt gene fragment was successfully amplified and cloned into a prokaryotic protein expression system. Protein expression in resulting recombinant strains Lc-MCS-Malt (surface-displayed) and Lc-pPG-Malt (secretory) was then verified by Western blotting and indirect immunofluorescence. A single band was observed on the Western blots, with the molecular weight of the corresponding protein shown to be 48 kDa. Furthermore, a fluorescent signal for Lc-MCS-Malt was observed by fluorescence microscopy. At 0, 7, 16, 25, and 34 days post-immunization, tissue and blood samples were collected from common carp orally administered with the recombinant L. casei strains for immune-related index analyses. Treatment of common carp with the recombinant vaccine candidate stimulated high serum or skin mucus specific antibody titers and induced a higher lysozyme, ACP, SOD activity, while fish fed with Lc-pPG or PBS had no detectable immobilizing immune responses. Expression of IL-10, IL-1ß, TNF-α, and IFN-γ genes in the group immunized with recombinant L. casei were significantly (P < 0.05) up regulated as compared with control groups, indicating that inflammatory response and cell immune response were triggered. Results also showed that recombinant L. casei could stimulate the mucosa through colonization of the intestine, resulting in increased transcription of IL-10, IL-1ß, TNF-α, and IFN-γ. Immunity and colonization assays also showed that after 34 days of fasting, recombinant L. casei were still present in the intestines of the immunized fish. Common carp that received Lc-MCS-Malt(53.3%) and Lc-pPG-Malt (46.7%) exhibited higher survival rates than the controls after challenge with the pathogen A. veronii. Our findings suggested that recombinant L. casei can adequately protect fish and improve immunity, providing a theoretical basis for the future development of an oral Lactobacillus vaccine for use in aquaculture.


Assuntos
Aeromonas veronii/genética , Aeromonas veronii/imunologia , Proteínas de Bactérias/genética , Expressão Gênica , Lacticaseibacillus casei/genética , Lacticaseibacillus casei/imunologia , Proteínas Recombinantes , Animais , Vacinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Clonagem Molecular , Citocinas/genética , Citocinas/metabolismo , Doenças dos Peixes/prevenção & controle , Imunidade Humoral , Imunização , Leucócitos/imunologia , Leucócitos/metabolismo , Especificidade de Órgãos , Fagocitose/genética , Plasmídeos/genética
11.
J Basic Microbiol ; 60(1): 72-81, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31737922

RESUMO

Salmonella Enteritidis is an important foodborne pathogen that can infect a wide range of animal species including human beings, resulting in great losses to commercial husbandry and human health. CirA is an outer membrane receptor involved in iron uptake and colicin1A/B-mediated competitive killing. Although iron uptake is crucial to bacterial virulence, limited literature is available about the role of CirA in infection. In the present work, we aimed to evaluate the role of CirA during S. Enteritidis infection. For this purpose, we generated a CirA-deficient mutant of the S. Enteritidis strain C50336 and examined its biological characteristics. The results showed that cirA gene inactivation caused sharply decreased biofilm formation and apparently impaired antibiotic resistance. Furthermore, the cirA gene deletion mutant showed markedly reduced adhesion and invasion to human epithelial cell line Caco-2 cells and decreased proliferation in mouse macrophage cell line RAW264.7 cells. Moreover, attenuated virulence was determined by a mouse model, with an LD50 increase of approximately 1,000-fold. These data indicated that CirA plays critical roles in the S. Enteritidis infection process.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Receptores de Superfície Celular/metabolismo , Salmonella enteritidis/fisiologia , Salmonella enteritidis/patogenicidade , Virulência/genética , Animais , Antibacterianos/farmacologia , Aderência Bacteriana , Proteínas da Membrana Bacteriana Externa/genética , Biofilmes/crescimento & desenvolvimento , Células CACO-2 , Colicinas , Farmacorresistência Bacteriana , Humanos , Macrófagos/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana , Células RAW 264.7 , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Salmonelose Animal/microbiologia , Salmonella enteritidis/efeitos dos fármacos
12.
Microb Pathog ; 135: 103622, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31323322

RESUMO

Myeloperoxidase (MPO) is a ferrous lysosomal protein with many immune functions that belongs to the heme peroxidase enzyme. In this study, the functions of MPO in the northern snakehead (Channa argus) were investigated by cloning an MPO cDNA sequence with a full length of 3181 bp. Homology analysis showed that northern snakehead MPO gene had the highest (81%) homology with mandarin fish (Siniperca chuatsi). In healthy northern snakehead, the MPO gene was expressed in the head-kidney, kidney, heart, gill, spleen, liver, and muscles but not midgut. After the northern snakehead was infected with Aeromonas veronii, the MPO gene expression varied in different tissues with low level in spleen, liver, gill and muscle, fluctuated in kidney and head-kidney and showed high level in heart. The result indicated that MPO might play an important role in the antimicrobial immune response of the northern snakehead.


Assuntos
Aeromonas veronii/patogenicidade , Doenças dos Peixes/microbiologia , Peixes/metabolismo , Infecções por Bactérias Gram-Negativas/veterinária , Peroxidase/fisiologia , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar , Peixes/genética , Expressão Gênica , Coração , Rim/patologia , Fígado/metabolismo , Músculos/metabolismo , Peroxidase/classificação , Peroxidase/genética , Filogenia , Baço/metabolismo
13.
Microb Pathog ; 135: 103570, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31158492

RESUMO

Escherichia coli can cause severe, acute hemorrhagic pneumonia and systemic infection in farmed foxes, raccoon dogs and minks, leading to considerable economic losses to the farmers. It is well established that the htrA-encoded serine protease HtrA is critical for bacterial growth and survival under stress, and HtrA has been determined to be a potential vaccine target. However, the roles of HtrA in E. coli pathogenesis remain unknown. In this study, we generated an htrA-deletion mutant of the E. coli protype strain HBCLE-12 that causes pneumonia in silver foxes and then evaluated the changes in bacterial physiological characteristics in the absence of HtrA. The data show that knockout of the htrA gene did not affect growth and biochemical characteristics but led to impaired virulence of the strain. Increased susceptibility to environmental stresses, impaired survival in serum, and reduced biofilm formation may contribute to the virulence attenuation of the mutant. Furthermore, the HtrA-deficient mutant was subjected to RNA-seq analysis, and 16 differentially expressed genes were determined. This study provided insight that HtrA plays a definitive role in E. coli-induced infection.


Assuntos
Infecções por Escherichia coli/veterinária , Escherichia coli/enzimologia , Escherichia coli/genética , Raposas/microbiologia , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Doenças dos Animais/microbiologia , Animais , Proteínas de Bactérias , Biofilmes/crescimento & desenvolvimento , Proteínas e Peptídeos de Choque Frio/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/patogenicidade , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Camundongos , Pneumonia/microbiologia , Pneumonia/veterinária , Deleção de Sequência , Estresse Fisiológico/genética , Transcriptoma , Virulência/genética , Fatores de Virulência/genética
14.
Can J Vet Res ; 83(2): 122-132, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31097874

RESUMO

Hemorrhagic pneumonia in mink is a fatal disease caused by Pseudomonas aeruginosa. Very little is known about P. aeruginosa in relation to genotype and the mechanisms underlying antimicrobial resistance in mink. A total of 110 P. aeruginosa samples were collected from mink from Chinese mink farms between 2007 and 2015. Samples underwent molecular genotyping using pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST), antimicrobial susceptibility and its mechanism were investigated at the molecular level. The PFGE identified 73 unique types and 15 clusters, while MLST identified 43 (7 new) sequence types (ST) and 12 sequence type clonal complexes (STCC). Sequence types and PFGE showed persistence of endemic clones in cities Wendeng (Shandong, China) and Dalian (Liaoning, China), even in different timelines. The MLST also revealed the gene correlation of the mink P. aeruginosa across different time and place. The ST1058 (n = 14), ST882 (n = 11), and ST2442 (n = 10) were the predominant types, among which ST1058 was the only one found both in Shandong province and Dalian (Liaoning, China). The MLST for P. aeruginosa infection in mink was highly associated with that in humans and other animals, implying possible transmission events. A small proportion of mink exhibited drug resistance to P. aeruginosa (9/69, 13%) with resistance predominantly to fluoroquinolone, aminoglycoside, and ß-lactamase. Eight strains had mutations in the quinolone-resistance determining regions (QRDR). High proportions (65%; 72/110) of the fosA gene and 2 types of glpt deletion for fosmycin were detected. Furthermore, in the whole genome sequence of one multidrug resistant strain, we identified 27 genes that conferred resistance to 14 types of drugs.


La pneumonie hémorragique du vison est une maladie fatale causée par Pseudomonas aeruginosa. Très peu de choses sont connues à propos de P. aeruginosa en lien avec le génotype et les mécanismes sous-jacents à la résistance antimicrobienne chez les visons. Un total de 110 échantillons de P. aeruginosa furent prélevés de visons provenant de fermes de vison chinoises entre 2007 et 2015. Les échantillons ont été soumis à du génotypage moléculaire par électrophorèse en champs pulsés (PFGE) et typage de séquence multi-locus (MLST), des tests de sensibilité aux antibiotiques et ses mécanismes furent étudiés au niveau moléculaire. L'analyse par PFGE a identifié 73 types uniques et 15 regroupements, alors que le MLST a identifié 43 (7 nouveaux) types de séquences (ST) et 12 complexes clonaux de types de séquences (STCC). L'analyse des ST et du PFGE a montré la persistance de clones endémiques dans les villes de Wendeng (Shandong, Chine) et Dalian (Liaoning, Chine), même lors de différentes chronologies. Le MLST a également révélé la corrélation génétique des isolats de P. aeruginosa de vison de différentes locations et de temps différents. Les types ST1058 (n = 14), ST882 (n = 11), et ST2442 (n = 10) étaient les types prédominants, parmi lesquels ST1058 était le seul retrouvé dans la province de Shandong et à Dalian (Liaoning, Chine). Le MLST des isolats de P. aeruginosa provenant d'infection chez les visons était hautement associé à celui chez les humains et d'autres animaux, suggérant de possibles évènements de transmission. Une petite portion des isolats de P. aeruginosa de vison (9/69, 13 %) démontrait de la résistance aux antibiotiques, principalement envers les fluoroquinolones, les aminoglycosides et les ß-lactamines. Huit souches avaient des mutations dans les régions déterminant la résistance aux quinolones. Des proportions élevées (65 %, 72/110) du gène fosA et deux types de délétion glpt pour la fosmycine furent détectées. De plus, dans la séquence entière du génome d'une des souches multirésistantes, nous avons identifié 27 gènes conférant de la résistance à 14 types de médicaments.(Traduit par Docteur Serge Messier).


Assuntos
Antibacterianos/farmacologia , Hemorragia/veterinária , Vison/microbiologia , Pneumonia Bacteriana/veterinária , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , China , DNA Bacteriano , Surtos de Doenças , Farmacorresistência Bacteriana , Eletroforese em Gel de Campo Pulsado , Genoma Bacteriano , Hemorragia/epidemiologia , Hemorragia/etiologia , Hemorragia/microbiologia , Tipagem de Sequências Multilocus , Pneumonia Bacteriana/epidemiologia , Pneumonia Bacteriana/microbiologia , Sorotipagem
15.
Fish Shellfish Immunol ; 87: 627-637, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30708057

RESUMO

Aeromonas veronii is an important type of gram-negative pathogen of human-livestock-aquatic animal and causes great economic losses in the aquaculture industry. Vaccination is an effective method of defence against A. veronii. There are many factors that restrict the use of vaccination, and the development of new oral vaccines is urgently needed. The selection of suitable antigens is of great significance for the development of aquaculture vaccines. Bacterial flagellin can specifically bind to TLR5 and induce the release of cytokines from the organism, which could be used in the development of vaccines. In this study, we constructed two recombinant Lactobacillus casei (L. casei) (surface-displayed or secretory) expressing the flaB of A. veronii and evaluated the effect of immune responses in common carp. The flaB gene (900 bp) of A. veronii was subcloned into the L. casei expression plasmids pPG-1 (surface-displayed) and pPG-2 (secretory). Western blot and immunofluorescence assays confirmed the expression of the recombinant flaB protein. Common carp immunized with Lc-pPG-1-flaB and Lc-pPG-2-flaB via oral administration route exhibited induction of antibody expression and innate immune responses. The results indicated that Lc-pPG-1-flaB and Lc-pPG-2-flaB can induce high levels of IgM, ACP, AKP, LZM and SOD activity in organisms, and Lc-pPG-1-flaB can induce even higher levels. The recombinant L. casei may effectively induce humoral immunity and increase the serum immunological index. Furthermore, leukocytes phagocytosis percentage and index of the recombinant L. casei were enhanced. The results of qRT-PCR showed that recombinant L. casei can significantly increase the expression of IL-10, IL-ß, IFN-γ and TNF-α in the tissues of immunized common carp, compared with control groups. Viable recombinant L. casei strains, which were delivered directly survived throughout the intestinal tract. Common carp that received Lc-pPG-1-flaB (66.7%) and Lc-pPG-2-flaB (53.3%) exhibited higher survival rates than the controls after challenge with the pathogen A. veronii. Our work indicated that Lc-pPG-1-flaB and Lc-pPG-2-flaB had beneficial effects on immune response and enhanced the disease resistance of common carp against A. veronii infection. The combination of flaB delivery and the Lactic acid bacteria (LAB) approach may be a promising method for the development of oral vaccines for treating A. veronii. In future research, we will focus on the colonization ability of LAB in the intestines and on the impact of these bacteria on intestinal flora.


Assuntos
Aeromonas veronii/efeitos dos fármacos , Vacinas Bacterianas/imunologia , Carpas/imunologia , Flagelina/farmacologia , Imunização/veterinária , Imunogenicidade da Vacina/imunologia , Lacticaseibacillus casei/imunologia , Administração Oral , Animais , Anticorpos Antibacterianos/imunologia , Formação de Anticorpos/imunologia , Flagelina/administração & dosagem , Vacinas Sintéticas/imunologia
16.
J Fish Dis ; 42(3): 379-389, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30614537

RESUMO

Aeromonas veronii is one of the main pathogens causing freshwater fish sepsis and ulcer syndrome. More and more cases have shown that it has become an important zoonotic and aquatic agent. In this study, a A. veronii TH0426 mutant strain (ΔlamB) with an in-frame deletion removed nucleotides 10-1,296 of the lamB gene was firstly constructed to investigate its functions. The results showed that the LD50 value of the mutant ΔlamB to zebrafish and mice was 13.7-fold and 5.6-fold higher than those of the wild-type strain, respectively. The toxicity of wild-type strain to EPC cells was 2.1-fold and threefold higher than those of ∆lamB when infected for 1 and 2 hr. Furthermore, the ability of biofilm formation and the adhesion and invasion to EPC cells of ∆lamB significantly decreased for 5.6-fold and 1.8-fold separately. In addition, motility detection result indicated that ∆lamB lost the swimming ability. The results of flagellar staining and TEM demonstrated that the flagella of ∆lamB were shed. In general, the deletion of lamB gene caused a significant decrease in the virulence and adhesion of A. veronii TH0426, and it can be known that the lamB gene of A. veronii plays a crucial role in the pathogenesis.


Assuntos
Aeromonas veronii/genética , Proteínas da Membrana Bacteriana Externa/genética , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Porinas/genética , Receptores Virais/genética , Virulência/genética , Aeromonas veronii/patogenicidade , Animais , Biofilmes , Linhagem Celular , Cyprinidae , Flagelos , Camundongos , Deleção de Sequência , Peixe-Zebra
17.
Front Microbiol ; 9: 2173, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271397

RESUMO

Brucella spp. are intracellular pathogens that infect a wide variety of mammals including humans, posing threats to the livestock industry and human health in developing countries. A number of genes associated with the intracellular trafficking and multiplication have so far been identified in Brucella spp. However, the sophisticated post-transcriptional regulation and coordination of gene expression that enable Brucella spp. to adapt to changes in environment and to evade host cell defenses are not fully understood. Bacteria small RNAs (sRNAs) play a significant role in post-transcriptional regulation, which has already been confirmed in a number of bacteria but the role of sRNAs in Brucella remains elusive. In this study, we identified several different sRNAs in Brucella spp., and found that over-expression of a sRNA, tentatively termed BASI74, led to alternation in virulence of Brucella in macrophage infection model. The expression level of BASI74 increased while Brucella abortus 2308 was grown in acidic media. In addition, BASI74 affected the growth ratio of the Brucella cells in minimal media and iron limiting medium. Using a two-plasmid reporter system, we identified four genes as the target of BASI74. One target gene, BABI1154, was predicted to encode a cytosine-N4-specific DNA methyltransferase, which protects cellular DNA from the restriction endonuclease in Brucella. These results show that BASI74 plays an important role in Brucella survival in macrophage infection model, speculatively by its connection with stress response or impact on restriction-modification system. Our study promotes the understanding of Brucella sRNAs, as well as the mechanism by which sRNAs use to influence Brucella physiology and pathogenesis.

18.
Sci China Life Sci ; 59(4): 417-24, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26740105

RESUMO

Brucella melitensis is a facultative intracellular bacterium that replicates within macrophages. The ability of Brucella to survive and multiply in the hostile environment of host macrophages is essential for its virulence. The cold shock protein CspA plays an important role in the virulence of B. melitensis. To analyze the genes regulated by CspA, the whole transcriptomes of B. melitensis NIΔcspA and its parental wild-type strain, B. melitensis NI, were sequenced and analyzed using the Solexa/Illumina sequencing platform. A total of 446 differentially expressed genes were identified, including 324 up-regulated and 122 down-regulated genes. Numerous genes identified are involved in amino acid, fatty acid, nitrogen, and energy metabolism. Interestingly, all genes involved in the type IV secretion system and LuxR-type regulatory protein VjbR were significantly down-regulated in NIΔcspA. In addition, an effector translocation assay confirmed that the function of T4SS in NIΔcspA is influenced by deletion of the cspA gene. These results revealed the differential phenomena associated with virulence and metabolism in NIΔcspA and NI, providing important information for understanding detailed CspA-regulated interaction networks and Brucella pathogenesis.


Assuntos
Proteínas de Bactérias/genética , Brucella melitensis/genética , Análise de Sequência de RNA/métodos , Transcriptoma , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Western Blotting , Brucella melitensis/metabolismo , Brucella melitensis/patogenicidade , Linhagem Celular , Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica , Macrófagos/microbiologia , Camundongos , Mutação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Virulência/genética
19.
FEMS Microbiol Lett ; 362(12): fnv078, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25956175

RESUMO

Copper is a potent antimicrobial agent. Multiple mechanisms of copper tolerance are utilized by some pathogenic bacteria. BMEII0580, which is significantly similar to the multicopper oxidase from Escherichia coli, was predicted to be the probable blue copper protein YacK precursor in Brucella melitensis 16M, and was designated as Brucella multicopper oxidase (BmcO). A bioinformatics analysis indicated that the typical motifs of multicopper oxidases are present in BmcO. BmcO, the expression of which was up-regulated by copper, could catalyze the oxidation of 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), dimethoxyphenol (DMP) and para-phenylenediamine (pPD), which are widely used as substrates for multicopper oxidase. Additionally, BmcO exhibited ferroxidase activity, which indicated that it might play an important role in the Fe(2+) uptake of B. melitensis. Importantly, the mutant strain 16MΔbmcO was more sensitive to copper than the wild-type strain B. melitensis 16M as well as its complementation strain 16MΔbmcO(bmcO). The infection assays of cells showed that similar bacterial numbers of B. melitensis 16M, 16MΔbmcO and 16MΔbmcO(bmcO) strains were recovered from the infected macrophages. This result indicated that BmcO was not essential for B. melitensis intracellular growth. In conclusion, our results confirm that BmcO is a multicopper oxidase and contributes to the copper tolerance of B. melitensis 16M.


Assuntos
Brucella melitensis/efeitos dos fármacos , Brucella melitensis/enzimologia , Cobre/farmacologia , Farmacorresistência Bacteriana/genética , Oxirredutases/metabolismo , Antibacterianos/farmacologia , Brucella melitensis/genética , Brucella melitensis/crescimento & desenvolvimento , Brucelose/microbiologia , Ceruloplasmina/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Teste de Complementação Genética , Ferro/metabolismo , Macrófagos/microbiologia , Oxirredutases/genética , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...